Unveiling Cosmic Dawn

Anastasia Fialkov (IoA, Cambridge) 11.12.2021 Synergies @ Prague

History of the Universe in a Nutshell

Koopmans et al. 2021

The Unobserved Universe

Existing surveys: Last scattering surface CMB Local Universe (out to z ~ 3)

Bright galaxies out to $z \sim 11$ Bright quasars out to $z \sim 7.5$

Emerging Picture of the High-z Universe

Late reionization (z < 6)

- High-z quasars
- Ly-a emitters

Early onset of star formation (z > 15):

- ALMA OIII: onset of star formations at z ~ 15
- Luminous galaxies at z ~ 11
- EDGES 21-cm (TBC): Ly-a coupling at z ~ 21

Weinberger et al. 2019

21-cm Observations will Fill the Gap

Existing surveys: Last scattering surface CMB Local Universe (out to z ~ 3)

Bright galaxies out to $z \sim 11$ Bright quasars out to $z \sim 7.5$

Ongoing Observational Effort

Global signal and power spectra experiments

Koopmans et al. 2021

First Claimed Detection of the 21-cm from Cosmic Dawn

First Claimed Detection of the 21-cm from Cosmic Dawn

If truly cosmological Location: Star formation at z ~ 20 X-ray binaries at z ~ 16

First Claimed Detection of the 21-cm from Cosmic Dawn

Inconsistent with standard astro

Proposed solutions:

- dark matter interactions (fine-tuned)
- extra-radio background (extreme)

New Tests of EDGES-Motivated Models: High-z Power Spectra

Reis, Fialkov, Barkana (2020)

Verification Attempts

Global signal and power spectra experiments

Credit: Udaya Shankar (RRI)

Observational Status at Cosmic Dawn

Upper limits on the 21 cm power spectrum at 95% confidence from various experiments at z = 12-30

Mertens et al. 2021

Observational Status at the EoR

By I. Abril Cabezas & S. Heimersheim

HERA – Best Limits so Far external galactic standard 5 10^{4} $\Delta^2_{UL} [m K^2]$ 4 10^{2} 3 8 7 9 L₂ redshift zHERA (HERA+21) LOFAR (Patil+17) V LOFAR (Mertens+20) MWA (Trott+20) *

The HERA collaboration

By I. Abril Cabezas & S. Heimersheim

ollaboration

Future: Tomographic Scan of the Neutral Universe

With 21-cm signal: Information from every redshift

- Timing of cosmic events
- Astrophysical properties of high-redshift sources
- Cosmology in the new redshift regime
- Baryonic matter distribution
- Probe of dark matter physics
- Thermal and ionization histories

Dark Ages from Space!

- Avoid Ionosphere
- Avoid RFI
- Unique way to probe the dark ages

NCLE

DSL

History of the Universe in a Nutshell

Koopmans et al. 2021

21-cm is Rich in Astrophysics and Cosmology

Epoch of Reionization

Cosmic Dawn: First Stars and Galaxies

Dark Ages

Cosmic Microwave Background

Main Players:

- Ly-a (WF) coupling of $T_S \rightarrow T_{gas}$
- Contrast between T_{gas} and T_{rad}
- Ionization History
- DM physics

21-cm is Rich in Astrophysics and Cosmology

Cosmic Dawn

First stars and black holes

Dark Ages

Dark matter and cosmology

Epoch of Reionization

Ionization: Massive galaxies and quasars

Gas temperature: Integrated history

Rich structure in Fluctuations Subtle Processes that Have Long-Lasting Effects

Fluctuations:

- Density and velocity
- Ly-a, heating, radio, ionization
- Structure formation
- Evolution of populations

Example of subtle processes:

- Ly-a scattering
- Ly-a heating
- Evolution of populations
- DM effects

Learning about Astrophysics from the 21-cm Signal

Ly-a Physics

- Fundamental, enables 21-cm line observations
- Radiation produced by first stars couples between the 21-cm levels and the cold gas temperature
- Can happen late (if massive galaxies dominate)!

Cohen, Fialkov, Barkana 2017

Detecting the First Star Light: Lyman-a Coupled Bubbles

Ly-a coupled bubbles (3D)

Strong observable 21cm signal, seen in absorption against the background.

- Mass of star forming halos
- Feedback
- Star formation efficiency

Reis, Barkana, Fialkov (2021)

- Scattering
- Ly-a window function
- Effective horizon of Ly-a radiation

- Details of heating affect the observable signal
- Cumulative effect the whole history matters!
- Gas can be hotter or colder than the background in the EoR range.
- Stronger heating leads to weaker contrast between the gas temperature and the background, weaker 21-cm PS.

X-ray Heating

Heating by X-ray binaries likely dominates

Depends on intensity of sources and their SED (spectral energy distribution)

- Wide possible redshift range of models
- Strong impact on PS in a broad range

Cohen, Fialkov, Barkana 2017

Cygnus X-1 *Chandra*

Heated Bubbles

With Ly-a coupling: 21-cm signal is seen in absorption in cold gas, emission in hot.

Non-uniform heating -> heated bubbles

Fluctuations in the 21cm.

X-ray SED matters!

Hard X-rays are more diffused than soft X-rays, carry energy further from the source

- Heating of gas is on larger scales
- Heating is less efficient
- X-ray SED is imprinted in the 21cm PS

Fialkov et al. 2014

Hard vs soft X-ray SEDs. Same total energy output.

Heating maps from realistic 21-cm simulations shown at the same redshift.

Fialkov & Barkana (2014)

Fialkov & Barkana (2014)

Diversity of X-ray Heating Models

Hot or cold IGM during the EoR: emission or absorption signal? Hard or soft SED? Peak in the 21-cm power spectrum

Fialkov et al. (2017)

Subtle Effect - Ly-a Heating Important for upper limits at low z!

Heating/cooling due to recoil of atoms as a result of Ly-a scattering e.g. Chen & Miralda-Escude 2004, Chuzhoy & Shapiro 2006, 2007, Furlanetto & Pritchard 2006

- Continuum photons (between Ly-b and Ly-a) redshift into Ly-a. Heat the gas.
- Injected photons (cascade from higher levels). Cool the gas.
- Net heating by ~100 K!

Spectral shape around Ly-a line

Reis, Fialkov, Barkana (2021)

Ly-a Heating & CMB Heating

- Require high Ly-a intensity
- Dominates at low redshifts (z<15)
- Ly-a heating of ~100 K; CMB heating ~ a few degrees
- Effect on signals for no/weak X-ray heating in the observable range

Reis, Fialkov, Barkana (2021)

Effect of Ly-a & CMB Heating on the Space of Plausible 21-cm Signals

Large parameter study to explore ranges of possible signals in the observable scale/frequency range.

Impact on the deepest signals that are the easiest to rule out

Reis, Fialkov, Barkana (2021)

Enhanced Radio Background CMB + Extra Contribution

Radio background (RB) could be created by galaxies or exotic sources. With RB above the CMB: larger contrast between the gas temperature and the background, stronger 21-cm signal. EDGES can be explained by strong RB, stronger signals in the EoR range

Radio Galaxies at High Redshifts

Increased contrast and modified structure of Ly-a coupled bubbles Additional source of fluctuations

Reis, **Fialkov**, Barkana (2020)

Signatures of Fluctuating Radio Background

- Sizable (model-dependent) effect even for modest values of f_{Radio}
- Boost in the power spectrum
- Radio fluctuations are correlate with Ly-a and density & anti-correlate with heating
- Effect depends on model parameters (e.g., X-ray SED, stellar mass)

Case study: 21-cm with soft X-ray SED and large f_{Radio}

Reis, Fialkov, Barkana (2020)

New Tests of EDGES-Motivated Models: High-z Power Spectra

Reis, Fialkov, Barkana (2020)

HERA Constraints on Excess Radio Background Models

- Radio galaxies models are constrained by the HERA data
- Main effects from heating and radio background

The HERA Collaboration 2021

No Clarity on EDGES

HERA and EDGES observe different redshifts.

Models that are bright in EDGES will be below limit of HERA

The HERA Collaboration 2021

Reionization!

COsmic DAwn simulation: a masterpiece Radiation-hydrodynamics simulation of the self-consistent coupling of galaxy formation and reionization (~100Mpc)

Ocvirk et al. 2016

HERA : Probe of the EoR 21-cm PS

- Driven by massive galaxies
- Strongest signals: cold IGM and close to mid-point reionization

Fialkov et al. 2014

HERA : Probe of the EoR 21-cm PS

Mild constraints on standard astrophysical models (with CMB background)

The HERA Collaboration theory paper

Dark Matter Physics

- Example: Energy exchange via Rutherford scattering with velocitydependent cross-section (Tashiro et al. 2014, Munoz et al. 2015, Barkana ~ 2018)
- Millicharged DM
- Very constrained
- Strong fluctuations at high redshifts

Liu et al. 2019

Summary:

- 21-cm signal is rich in information
- Current HERA limits are the best available at the EoR
- Subtle effects need to be included for precision modelling
- No clarity on EDGES
- Weak limits on standard models, stronger constraints on models with excess radio background
- Looking forward to next data releases!

Thank you!

